Organic & Biomolecular Chemistry

Cite this: Org. Biomol. Chem., 2012, 10, 5518

www.rsc.org/obc

COMMUNICATION

Stereoselective construction of the tetracyclic core of Cryptotrione†

Song Chen, Chao Rong, Pengju Feng, Songlei Li and Yian Shi*a,b

Received 14th May 2012, Accepted 14th June 2012 DOI: 10.1039/c2ob25923k

An efficient stereoselective approach to the tetracyclic core of Cryptotrione, involving an asymmetric Michael addition,

ring-closing metathesis, and subsequent cyclopropanation, is described.

Cryptotrione (1) (Fig. 1), isolated by Kuo and coworkers in 2010 from the bark of *Cryptomeria japonica*, contains a unique 5-membered spirocycle fused with a cyclopropane and has been shown to possess anticancer activity against KB cells (IC $_{50}$ = $6.44 \pm 2.23 \,\mu\text{M}$). The promising biological activity and interesting structure of Cryptotrione make it an attractive synthetic target. The left-hand 6-membered fused tricyclic structures are present in a number of naturally occurring compounds, and their syntheses have been reported. However, the right-hand 5-membered spirocycle fused with a cyclopropane is very rare in isolated natural products. Herein we wish to report an asymmetric approach to the right-hand tetracyclic core of Cryptotrione (2) (Scheme 1).

Our retrosynthetic analysis of the tetracyclic fragment is illustrated in Scheme 1. Compound 2 was envisioned to form via cyclopropanation of alkene 3, which could be constructed by ring-closing metathesis of diene 4. Compound 4 could be prepared from diester 5 via reduction, oxidation, and Wittig reaction. The quaternary stereocenter of diester 5 could be formed by asymmetric Michael addition of β -keto ester 6.

Fig. 1 Structure of Cryptotrione

OH
$$OH$$
 OMe OMe OMe OMe OMe OMe $OTBS$ $OTBS$

Scheme 1 Retrosynthetic analysis of Cryptotrione core.

The synthesis of 5-membered spirocycle 3 is shown in Scheme 2. The quaternary stereogenic center of compound 7 was constructed from β-keto ester 6 via an asymmetric Michael addition with slight modification of the reported methods.⁵ After various screenings, quinine derived catalyst 86 was found to be the best choice, giving compound 7 with 72% yield and 90% ee in CHCl₃ at 25 °C with 10 mol% catalyst.⁷ The ketone in 7 was reduced with (n-Bu)₄NBH₄ in the presence of CeCl₃·7H₂O in EtOH at -78 °C, 8 affording alcohol 9 in 72% yield and >10:1 dr. Addition of CeCl₃·7H₂O was found to be very important for both reactivity and diastereoselectivity of the reduction. Diol 10 was obtained from 9 via protection with TBSCl and DIBAL-H reduction. Then compound 10 could be converted to diene 4 by Swern oxidation and Wittig olefination in 54% yield over two steps. ¹⁰ Spirocycle 3 was readily formed in 91% yield at rt via ringclosing metathesis with the second-generation Grubbs catalyst. 11 It is worth mentioning that the initial reduction of the ketone in 7 and TBS protection were important for the subsequent functional groups manipulations. The ketalization of the ketone was unsuccessful. When the ketone was protected as TBS enol ether, a messy mixture was obtained during the subsequent Swern oxidation step.

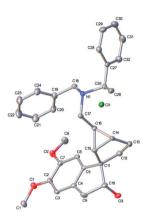
As outlined in Scheme 3, the cyclopropanation of spirocycle 3 was achieved with ethyl diazoacetate, 2.5 mol% (CuOTf)₂·PhH, and 5.5 mol% ligand 12 in CH₂Cl₂ at 25 °C, giving compound 11 in 93% yield with >10:1 dr. ¹² It was found that slow addition of ethyl diazoacetate *via* syringe pump was important for the high yield. Compound 11 was finally converted to compound 2 by deprotection of the TBS group with TBAF (88% yield) and methyl groups with BBr₃ (79% yield). ¹³

^aBeijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China ^bDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. E-mail: yian@lamar.colostate.edu; Fax: +(1)-970-4911801; Tel: +(1)-970-4917424

[†] Electronic supplementary information (ESI) available: Experimental procedures, characterization data, and X-ray structure of **15** along with NMR spectra. CCDC 881889. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2ob25923k

Scheme 2 Synthesis of compound 3.

$$\begin{array}{c} \text{(CuOTf)}_{2} \cdot \text{PhH} \\ \text{(2.5 mol\%)} \\ \text{12 (5.5 mol\%)} \\ \text{N}_{2} \quad \text{CO}_{2}\text{Et} \\ \text{CH}_{2}\text{Cl}_{2} \\ \text{93\%, dr} > 10/1 \\ \end{array} \begin{array}{c} \text{MeO} \\ \text{H} \\ \text{TBSO} \\ \text{H} \\ \text{OH} \\ \text{Ph} \\ \text{12} \\ \end{array} \begin{array}{c} \text{1) TBAF, THF} \\ \text{88\%} \\ \text{2) BBr}_{3}, \text{ CH}_{2}\text{Cl}_{2} \\ \text{79\%} \\ \end{array}$$


Scheme 3 Synthesis of compound **2**.

After many attempts, the X-ray structure was finally obtained for ammonium salt **15**, derived from compound **11** and (R)-(+)-N-benzyl-1-phenylethylamine (Scheme 4), which allows the determination of the absolute configuration of the synthesized spiro tetracyclic structure (Fig. 2).

Conclusion

In summary, we have developed a stereoselective strategy to construct the right-hand tetracyclic core of Cryptotrione. The key steps involve an asymmetric Michael addition to form the quaternary stereocenter, ring-closing metathesis to achieve the

Scheme 4 Synthesis of compound 15.

Fig. 2 The X-ray structure of compound **15**.

spirocycle, and copper-catalyzed stereoselective cyclopropanation to construct the fused cyclopropane. The absolute configuration of the core was determined by X-ray structure. The application of this strategy to the total synthesis of Cryptotrione and its derivatives as well as biological activity studies are currently under way.

Acknowledgements

The authors gratefully acknowledge the National Basic Research Program of China (973 program, 2011CB808600) and the Chinese Academy of Sciences for the financial support.

Notes and references

- C.-C. Chen, J.-H. Wu, N.-S. Yang, J.-Y. Chang, C.-C. Kuo, S.-Y. Wang and Y.-H. Kuo, Org. Lett., 2010, 12, 2786.
- 2 For an earlier report on compounds with similar structures isolated from leaves of *Cryptomeria japonica*, see: W.-C. Su, J.-M. Fang and Y.-S. Cheng, *Phytochemistry*, 1993, 34, 779.
- 3 (a) Z. Yang, Y. Kitano, K. Chiba, N. Shibata, H. Kurokawa, Y. Doi, Y. Arakawa and M. Tada, Bioorg. Med. Chem., 2001, 9, 347; (b) D. H. Hua, X. Huang, Y. Chen, S. K. Battina, M. Tamura, S. K. Noh, S. I. Koo, I. Namatame, H. Tomoda, E. M. Perchellet and J.-P. Perchellet, J. Org. Chem., 2004, 69, 6065; (c) M. A. Zuniga, J. Dai, M. P. Wehunt and Q. Zhou, Chem. Res. Toxicol., 2006, 19, 818; (d) M. Tada, J. Kurabe, H. Yasue and T. Ikuta, Chem. Pharm. Bull., 2008, 56, 287.
- 4 The synthesis of compound **6** is described in the ESI.† For a similar synthesis of β-keto ester, see: (a) U. K. Tambar, D. C. Ebner and

- B. M. Stoltz, J. Am. Chem. Soc., 2006, 128, 11752; (b) S. Krishnan, J. T. Bagdanoff, D. C. Ebner, Y. K. Ramtohul, U. K. Tambar and B. M. Stoltz, J. Am. Chem. Soc., 2008, 130, 13745.
- 5 (a) F. Wu, R. Hong, J. Khan, X. Liu and L. Deng, Angew. Chem., Int. Ed., 2006, 45, 4301; (b) C. L. Rigby and D. J. Dixon, Chem. Commun., 2008, 3798,
- 6 Y. Liu, B. Sun, B. Wang, M. Wakem and L. Deng, J. Am. Chem. Soc., 2009, 131, 418.
- 7 For additional leading references on chiral base-catalyzed asymmetric Michael addition of β-keto ester, see: (a) G. Bartoli, M. Bosco, A. Carlone, A. Cavalli, M. Locatelli, A. Mazzanti, P. Ricci, L. Sambri and P. Melchiorre, Angew. Chem., Int. Ed., 2006, 45, 4966; (b) J. Wang, H. Li, L. Zu, W. Jiang, H. Xie, W. Duan and W. Wang, J. Am. Chem. Soc., 2006, 128, 12652; (c) C. S. Cucinotta, M. Kosa, P. Melchiorre, A. Cavalli and F. L. Gervasio, Chem.-Eur. J., 2009, 15, 7913; (d) Z. Jiang, Y. Pan, Y. Zhao, T. Ma, R. Lee, Y. Yang, K.-W. Huang, M. W. Wong and C.-H. Tan, Angew. Chem., Int. Ed., 2009, 48, 3627; (e) J. Yang, W. Li, Z. Jin, X. Liang and J. Ye, Org. Lett., 2010, 12, 5218.
- 8 (a) M. Taniguchi, H. Fujii, K. Oshima and K. Utimoto, Tetrahedron, 1993, **49**, 11169; (b) M. Taniguchi, H. Fujii, K. Oshima and K. Utimoto, Tetrahedron, 1995, 51, 679; (c) C. A. M. Fraga, L. H. P. Teixeira,

- C. M. d. S. Menezes, C. M. R. Sant'Anna, M. d. C. K. V. Ramos, F. R. de Aquino Neto and E. J. Barreiro, Tetrahedron, 2004, 60, 2745; (d) J. Gong, G. Lin, W. Sun, C.-C. Li and Z. Yang, J. Am. Chem. Soc., 2010, 132, 16745.
- 9 (a) D. L. J. Clive, M. Yu and M. Sannigrahi, J. Org. Chem., 2004, 69, 4116; (b) K. Okura, S. Matsuoka, R. Goto and M. Inoue, Angew. Chem., Int. Ed., 2010, 49, 329
- 10 (a) S. L. Huang and D. Swern, J. Org. Chem., 1978, 43, 4537; (b) S. F. Martin, J. M. Humphrey, A. Ali and M. C. Hillier, J. Am. Chem. Soc., 1999, 121, 866; (c) D. Crich, H. Xu and F. Kenig, J. Org. Chem., 2006, 71, 5016; (d) B. Biswas, P. K. Sen and R. V. Venkateswaran, Tetrahedron, 2007, 63, 12026; (e) H. Toya, K. Okano, K. Takasu, M. Ihara, A. Takahashi, H. Tanaka and H. Tokuyama, Org. Lett., 2010, 12, 5196.
- 11 M. Scholl, T. M. Trnka, J. P. Morgan and R. H. Grubbs, Tetrahedron Lett., 1999, 40, 2247.
- 12 (a) D. A. Evans, K. A. Woerpel, M. M. Hinman and M. M. Faul, J. Am. Chem. Soc., 1991, 113, 726; (b) D. A. Evans, K. A. Woerpel and M. J. Scott, Angew. Chem., Int. Ed. Engl., 1992, 31, 430.
- 13 (a) C.-C. Lin, T.-M. Teng, C.-C. Tsai, H.-Y. Liao and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16417; (b) C. Pan, X. Zeng, Y. Guan, X. Jiang, L. Li and H. Zhang, Synlett, 2011, 425.